

Intent

- 1) Set the stage for reforming Electric Energy Systems (EES) education
- 2) Offer a brief perspective of emerging trends in education
- 3) Provide some background that should be considered *to transform EES education*

Present Challenge

- Erosion of our national "educational capital" is occurring just when we need more college educated workers
- Baby Boomers retiring
- Increasing skill requirements are necessary for new electric energy/power systems related jobs

MRI data related to learning

- Significantly changes the brain, doesn't just add bits of knowledge
- Building proteins, growing neurons \Rightarrow enhance neuron connections...
- Does the brain operate similar to a muscle? More exercise, more wiring?

Historic Transformations in Engineering Education

- Science-based engineering
- Computers in the classroom
- Active, team-based learning
- Widespread internet access
- Jam-packed curricula...

What We've Learned Active classrooms trump passive classrooms Reflection fosters re-organization of thinking for deep learning Students will remember more if provided less at any given time (average capacity of working memory is 7 chunks) 7032924620

(703) 292-4620

- Pre-class intro/exploration activity (research)
- On-line assessment → JIT in-class planning
 Preliminary in-class reflective question to stimulate
- discussion and develop coherence (Concept Inventory)
- 4. Inquiry-based, guided interactive/hands-on activity
- 5. Response system-based, open-ended question to foster restructuring (clickers)
- 6. Post-class concept assessment/reinforcement

Торіс	Industry	Academia
Problem identification or articulation	1	9
Ability to identify patterns of behavior or new combination of actions	2	3
Integration of knowledge across different disciplines	3	2
Ability to originate new ideas	4	6
Comfort with notion of "no right answer"	5	11
Fundamental curiosity	6	10
Originality and inventiveness in work	7	4
Problem solving	8	
Ability to take risks	9	8
Tolerance of ambiguity	10	7
Ability to communicate new ideas to others	11	5

Energy Systems Workforce Issues

- Industry needs a combination of left/right brain thinking
- EES jobs require good research, synthesis, and systems integration abilities
- China is trying to become more innovative, while the US is trying to be more rigorous (*it is better to be the US*)
- Need to stimulate, enable and foster creativity (Why did Steve Jobs, Bill Gates & Mark Zuckerberg drop out of college?)

Why Engineering Students Leave

- Poor performance in intro math/science courses
- Coursework too restrictive for students' varied interests
- Perception that other majors have easier classes and more fun – view engineering as a competitive and uncaring field
- ► A feeling of isolation from rest of the university due to the workload, lack of cross disciplinary opportunities

Why Engineering Students Leave Lack of role models – especially for women and underrepresented minority students

- Poor advising & teaching combined with a lack of exposure to engineering early on...leads to discouragement and departure
- Fear of outsourcing
- Lack of connection between what is studied and perceived as exciting practice

Today's Realities

- Engineering schools are heavily influenced by academic traditions that don't always support the profession's needs
- We aren't very effective in preparing students to integrate/organize their knowledge, skills and identity as a professional

NSF Impact

 NSF uses merit review to select about 10,000 new awards each year from more than 42,000 competitive proposals submitted annually

Solicitation \rightarrow Proposal \rightarrow Review \rightarrow Award \rightarrow Project

NSF TUES Program (formerly CCLI) Title changed to emphasize the special interest in projects that have the *potential to transform* undergraduate STEM education

- Emphasizes:
 - Materials, processes, or models that enhance student learning
 - · Widespread adoption of best classroom practices
 - Adaptation at many sites
 - Exploration of cyberlearning

A Successful Proposal

- Good idea + need
- Right people + infrastructure
- Assessment of outcomes that measure effect on student learning (with goals/objectives linked to evaluation)
- Active dissemination plan
- Efforts to broaden participation of underrepresented groups

What Works **Process-Oriented Guided Inquiry Learning** Work in teams to complete specially designed worksheets Guided inquiry that guide them through the inquiry process of learning Concept inventories Students are given data/information followed by leading Peer-led team learning questions Discuss material - rather than just hear about it ▶ 3 Phases: Exploration, Concept Invention, Application Problem-based learning Instructor serves as facilitator, observing and periodically Active recall of information addressing individual and class needs Effective use of technology

Peer-Led Team Learning

- Students who do well are trained as "peer leaders" to guide the efforts of 6-8 students
- Groups meet weekly (outside of class) to work together on challenging problems that help build conceptual understanding and skills
- Problems that can't be solved easily on one's own
- PLTL sessions replace traditional recitation sections
- Dept/Institutional support is essential, including logistics and finance

Problem/Service-Based Learning

- Instructor led/facilitated
- Complex problems open-ended, real world, deliberately vague
- Problems drive concept discovery on a need-to-know basis
- Ideal class size < 30 students (groups of 4-5)</p>
- Concepts will be understood and remembered longer when learned, explored, discussed, applied and tested in a practical context

